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Abstract

This paper describes the intermediate results of a
project to develop automated, high integrity, software
verification and validation techniques for aerospace ap-
plications. Automated specification validation and test
case generation are made possible by the targeted use
of formal methods. Specifically, the restricted domain of
use is exploited to reduce the set of mathematical prob-
lems to those that can be solved using constraint solvers,
model checkers and automated proof tactics. The prac-
ticality of the techniques is enhanced by the tight inte-
gration of the formal methods to intuitive specification
notations, existing specification modelling tools and a
traditional software development process.

This paper presents evidence to support an emerging
appreciation amongst the software engineering commu-
nity that, for the benefits of formal methods to be widely
exploited in industry, an approach must be taken that in-
tegrates formal analysis with intuitive engineering nota-
tions, traditional engineering approaches and powerful
tool support.

1. Introduction

It is widely accepted that verification and validation
(V&V) activities for high integrity systems are expen-
sive (typically over 50% of total software development
costs [2]). The requirements for such systems are of-
ten subject to change throughout the project so the high
V&V costs are normally incurred not only once, but
many times. Also, the cost of fixing errors later in the
development life-cycle can be many times more than
if they were identified during the phase in which they
were introduced. Additionally, commercial pressures to

reduce time to market, technological conservatism and
the need to meet standard test metrics make the software
V&V process a highly fragile and risky component of
system development.

The use of formal methods has long been advo-
cated as a means of improving the development of high
integrity systems. Despite evidence to support this
claim, e.g. [14, 17], formal methods have still to gain
widespread use in the software industry. Industrial ac-
ceptance of formal methods requires the development of
powerful tools to support formal analysis, pragmatic ap-
proaches to using these tools within a software process
and more industrially applicable examples of the suc-
cessful use of formal methods [6, 15]. Also, for the en-
gineers with the system domain knowledge to be able
to perform V&V there is a need, as Ould [22] put it, to
“disguise” the formality so that an impractical amount
of formal methods skill is not a pre-requisite to effective
V&V.

This paper describes the results of a project that
has achieved practical integration of automated formal
methods for V&V into an industrially applicable soft-
ware development process. The paper is structured as
follows: Section 2 introduces the background and ob-
jectives of the work reported here. Section 3 describes
the translation of domain specific, intuitive engineer-
ing notations into formal specifications. Section 4 de-
scribes how these intermediate formal specifications can
be used to automatically analyse certain properties of
the requirements specification. Section 5 describes a
method of automated test case design and test data gen-
eration, based again on the intermediate formal spec-
ification. Section 6 presents some results of applying
the techniques in practice and gives an evaluation of the
work so far. Section 7 presents some conclusions and
suggests directions for future work.



2. Background and objectives

The work reported here is being undertaken as part
of a process improvement programme to demonstrate a
“better, faster, cheaper” software process for develop-
ing Electronic Engine Controllers (EECs) for aircraft en-
gines. These are real-time, safety critical, fault-tolerant
computer systems embedded in complex engineering
products. The contribution of the V&V strand of the
process improvement work (the subject of this paper) is
to develop efficient and effective V&V techniques that
can be smoothly integrated into a practical engineering
process.

The use of formal methods is intended to increase
the integrity of engineering activities already performed
such as specification and testing. These improvements
must be implemented within a process that engineers
can use with the minimum amount of re-training. There-
fore intuitive engineering notations have been retained
as a means of software specification and techniques have
been developed to increase the integrity of these specifi-
cations through the use of automated formal analysis.

Although this research is targeted towards specifica-
tion validation and software testing, it is acknowledged
that significant benefits in these areas can not be at-
tained without improving the rigour and consistency of
the requirements specifications. Specification notations
are therefore used that are both “engineer friendly” and
amenable to formal analysis. The savings demonstrated
in the validation and testing phases serve as drivers to
encourage investment in these improved specification
activities. It is expected that the most significant cost-
benefits can be achieved by capturing more requirements
and software specification errors at the specification val-
idation phase (therefore reducing the number of itera-
tions of the software design, coding and testing phases)
and by automating test case generation (one of the most
time consuming parts of the present process).

3. Translating engineering notations into
formal specifications

Domain specific graphical engineering notations are
popular with engineers, but their semantics are often un-
clear from inspection of the diagrams alone. In reality,
it is also unlikely that only one notation will be used to
specify a system, or indeed that notations will be used
consistently between projects. The resulting loose spec-
ification and inconsistency complicates the task of au-
tomating specification validation and test case genera-
tion based on these notations. Indeed as the notations
change so frequently (as a result of commercial trends,
new or outdated tool-support etc.) it may not even be

cost effective to invest in automated V&V tool support
which may in practice only have a limited life-span and
audience.

Translation of the graphical requirements into a core
formal notation removes the vagueness of the original
notations and makes the behaviour implied by the spec-
ification explicit for the purposes of V&V. Validation
may thus be supported by rigorous (or formal) reason-
ing using the formal representation. Also, by explicitly
rendering all specified behaviour, the intermediate repre-
sentation is a strong basis for automated test case design.
The use of a common formal notation to model several
engineering notations facilitates re-use of the analysis
and test techniques. The introduction of a new notation
requires only a translation to the formal notation, after
which the previously developed tools and heuristics can
be re-used. A strict translation process allows a fixed
structure to be enforced on the resulting formal specifi-
cation that can be exploited in the development of au-
tomated heuristics, e.g. test data generation procedures
and proof tactics.

The work reported here focuses on the specification,
validation and verification of the discrete aspects of en-
gine controllers (well-established mathematically based
processes were already in place for modelling and vali-
dating the continuous aspects of the control software –
e.g. the control laws). The Practical Formal Specifica-
tion (PFS) notation [7, 19] is used to specify the func-
tional software requirements. The PFS notation consists
of hierarchical state machines (in particular, a dialect of
statecharts1 [9]) and tabular forms, such as those em-
ployed in SCR (Software Cost Reduction) e.g.[12]. The
notation has so far proven popular with the engineers
introduced to PFS2. PFS also provides a theory for com-
bining components specified in the notation – based on
weakest precondition reasoning – and a set of suggested
“healthiness properties” that specifications should dis-
play to be considered valid.

One of the cornerstones of the PFS approach is that
engineers are not only required to specify the intended
behaviour of components of the system, they are also
obliged to state explicitly the assumptions on which
each component relies, i.e. its domain of applicability.
Healthiness conditions can then be stated and discharged
to demonstrate that, for instance, within the assumptions
of each component the behaviour is completely and un-
ambiguously defined. Additionally, healthiness condi-
tions are stated to demonstrate that where behaviour is
scoped by assumptions, it is only ever used when the
required assumptions hold.

1The state-based notation employed in this paper, a sub-set of Stat-
echarts, differs slightly from that usually employed in PFS.

2Who have stated that they find the notation valuable even without
the added rigour provided by a formal underpinning.



Figure 1. Thrust Reverser System (De-
ployed)

Due to the restricted domain, the specifications
shared some common attributes which reduced the set of
(mathematical) problems that needed to be solved when
applying the formal analysis:

� The software requirements did not involve the stor-
age and maintenance of complex information struc-
tures, typically only fixed-point numbers, condi-
tions and enumerated types were used.

� In the control software domain, non-determinism
(looseness) as a means of abstraction is difficult to
apply3. In the example given here, the requirements
were tightly specified, only one outcome was to be
specified for each situation4.

PFS components are either reactive (the outputs de-
pend only on the current set of inputs) and specified us-
ing tables, or else state-based (the outputs depend on
both the current inputs and the current state of the sys-
tem) and specified using annotated state-machines.

The example used to illustrate the techniques re-
ported in this paper is the specification of a thrust re-
verser deployment mechanism. The thrust reverser pro-
vides part of the retarding force for an aircraft on land-
ing (see figure 1). It slows the aircraft by using pivot-
ing doors to redirect the engine thrust. For the purpose
of clarity and brevity, we will present a much simpli-
fied version of the specifications, although their essence
is retained. A real thrust reverser system was used as

3The controlled environment is understood in terms of the great
many relationships between physical quantities, as a result the expres-
sion of requirements are highly explicit and deterministic.

4Although PFS notation does allow some non-deterministic ab-
stractions to be used in certain situations [7].

the primary case study for evaluating the techniques de-
scribed here. The software specification used for the
case study consisted of 70 pages of PFS tables and stat-
echarts, component combination diagrams and support-
ing text.

Examples of software requirements written in PFS
are given in figures 2 and 3. Figure 2 describes a func-
tion that returns a boolean value (DoorDeployed) corre-
sponding to whether a door is locked into its deployed
position or not. The assumption defines the context
in which the component may be safely used (in this
case, the conditions under which sensor values may be
deemed to be valid). The guard/definition pairings de-
fine the conditions (guards) under which the function
returns particular values (definitions). A state-machine
that specifies which commands should be sent to the
door actuators based on the pilot actions and current
door position is given in figure 3. The part of the tran-
sition labels before the ‘/’ defines the condition under
which the transition is taken. The rest of the label de-
fines the action to be performed on taking the transition.
The values for DoorDeployed, DoorStowed and Pilot-
Command are calculated based on functions defined in
the reactive notation. Likewise the DoorActuators com-
mand would be transformed into actuator signals based
on the command and a number of environmental and po-
sitional inputs. This function would also be specified in
the reactive notation.

Both the reactive and state-based components are
translated into formal specifications (we use the model-
based notation Z [24] due to the large amount of local
experience and existing in-house tool support). The se-
mantics of PFS notations has been formally specified
also using Z and this is used to define the translation
from the reactive components into Z. The state-based
components are modelled using Statemate [10] (a com-
mercially available tool that allows Statecharts to be en-
tered and animated via a mouse-driven interface). The
semantics used by the tool are well-documented [11] and
have also been formally specified [20, 29]. These se-
mantics are used to define the translation from the State-
charts into Z. The formal specifications for both notation
types are structured as follows:

� Auxiliary definitions: These may include defini-
tions of types, constants and relations used to con-
strain the system according to the static semantics
of the engineering notation.

� Global State (for Statecharts only): Contains all in-
formation relating to the persistent state of the sys-
tem. This may include a set of currently active be-
havioural states, active events and the values of all
data variables local to the statechart. The global
state is constrained by semantic relations specified



Function: DoorDeployed
Assumption: FullyRetracted � RamPosition �

FullyExtended AND 0 � Hinge � 90

Guard 1: RamPosition > DeployedPosition AND Hinge >
80 AND DeployLock = Activated

Definition 1: True
Guard 2: RamPosition < DeployedPosition OR Hinge <

80 OR DeployLock = Deactivated
Definition 2: False

Figure 2. Reactive component for sensing thrust reverser door deployment

Idle

Deploying Stowing

DoorDeployed=True/
DoorActuators=Off

DoorStowed=True/
DoorActuators=Off

not (PilotCommand=Stow) and

DoorActuators=Deploy
DoorDeployed=False/ DoorStowed=False/

DoorActuators=Stow

not (PilotCommand=Deploy) and

PilotCommand=Stow/

PilotCommand=Deploy/

PilotCommand=Deploy/

Figure 3. State-based component for controlling door deployment

in the auxiliary definitions (defined in terms of a
state invariant).

� Operations: The dynamic behaviour of the system
is specified as a set of operations. Each operation
defines a transformation of the global state (for stat-
echart operations only) and inputs to the compo-
nent in terms of a pre-condition. A post-condition
constrains the next value of the global state (for
Statecharts operations only) and a definition of the
outputs of the component. One operation is speci-
fied for each reactive definition and for each state-
chart transition. These operations form the basis of
the specification validation and test case generation
activities described in the following sections.

The Statemate [10] tool provides an “Application
Programming Interface” (API), that allows direct access
to the internal form of the specification. An interfacing
tool, called StateZ, was written by the authors, that takes
this internal form and, based on an understanding of the
formal semantics of the Statecharts, directly generates
a formal specification of the statechart in Z. Included
in this specification are the accompanying proof conjec-

tures required to discharge particular healthiness checks
of the specifications (see section 4) and automatically
generated English language annotations. This informal
text provides the traceability between the formal opera-
tions and their corresponding part in the original require-
ments or a description of the property which the conjec-
tures are used to prove. These annotations not only allow
the generated Z document to be reviewed for correctness
with respect to the original requirements (verifying the
automated translation) but also form the basis of the test
descriptions which are used to associate each test with
the property in the requirements being checked. The ad-
dition of the informal text generation to the translation
tool was found to greatly increase the readability and us-
ability of the formal specification and associated tests.

The Statemate and StateZ tools can be run in parallel,
allowing the Z to be re-generated whenever a change is
made to the Statecharts. Coupled with the automated
theorem proving described below, this allows the formal
analysis to be used as a development aid rather than a
separate post development activity.

At present, no tool support exists for translating the
PFS reactive notation into Z (this step is done by hand)



and therefore the checking of the reactive components
was not as tightly integrated into the specification pro-
cess as for the Statecharts, however we predict that this
should not present any technical difficulties, given a suit-
able method of electronically recording and managing
the reactive tables.

4. Specification validation

In current industrial practice, many requirements er-
rors are only found once the system has been imple-
mented. Detecting them at an earlier stage in the de-
velopment would greatly reduce the cost of (both imple-
mentation and V&V) re-work. This can best be achieved
by applying a variety of diverse methods to validate the
requirements specifications. These can include peer re-
view, model animation (as supported by tools such as
Statemate) and automated formal analysis. The use of
intuitive engineering notations would normally exclude
the possibility of applying formal analysis. However,
based on the same mapping used to generate the formal
specification, specification healthiness conditions can be
couched as formal constraints. Formal analysis can then
be used to show the truth (or otherwise) of these con-
straints.

Completeness5 and determinism6 are two of the
healthiness conditions suggested by the PFS approach.
If the behaviour of a component is defined as a set of
operations fOp1;Op2; :::Opng over the inputs and state,
then a conjecture on the completeness of the specifica-
tion of that component can be formulated as follows:

` 8GlobalState; Inputs � Assumptions )
pre Op1 _ pre Op2 _ ::: pre Opn

Informally, for each possible value of the global state
(if there is one) and each combination of inputs that sat-
isfy the validity assumptions of the component, the pre-
condition of at least one operation is satisfied.

A similar conjecture can be defined to show the de-
terminism of the operations. Each combination of global
state and inputs that satisfies the component validity as-
sumption must satisfy at most one operation.

` 8GlobalState; Inputs � Assumptions )
8 i : 1::n� 1 � 8 j : i + 1::n �

:(pre Opi ^ pre Opj)

5The behaviour of a system is defined for each combination of in-
puts and current state.

6The behaviour of a system is unambiguously defined for each
combination of inputs and current state.

Completeness and determinism conjectures for the
example reactive definition and state-based component
are shown in figures 4 and 5 respectively.

` 8RamPosition : N; Hinge : N;

DeployLock : Activated j Deactivated �
(FullyRetracted � RamPosition � FullyExtended
^ 0 � Hinge � 90))

(RamPosition > DeployedPosition ^
Hinge > 80 ^ DeployLock = Activated) _
(RamPosition < DeployedPosition _
Hinge < 80 _ DeployLock = Deactivated)

Figure 4. Completeness conjecture for Do-
orDeployed

` 8 State : Idle j Deploying j Stowing;
PilotCommand : Off j Deploy j Stow;

DoorDeployed : Boolean;
DoorStowed : Boolean �
State = Stowing )

:(DoorStowed = True ^
:PilotCommand = Deploy ^
DoorStowed = False) ^
:(DoorStowed = True ^
PilotCommand = Deploy) ^
:(:PilotCommand = Deploy ^
DoorStowed = False ^
PilotCommand = Deploy)

Figure 5. Determinism conjecture for Stow-
ing

Closer inspection of these two conjectures show that
they are invalid. For the reactive component, no out-
come is specified if the hydraulic ram is exactly at the
deployed position or the hinge is at exactly 80 degrees.
For the state-based component, it is not clear to which
state the machine should move while in the Stowing
state if the pilot requests deployment at the same mo-
ment as the doors become stowed. Depending on the
behaviour specified within the Idle and Deploying states
(these could be super-states encapsulating more detailed
behaviour) taking one transition over another may have
a serious impact on the behaviour of the system.

The conjectures that arose from the case studies were
proven using CADiZ [26, 28]. CADiZ is a general pur-
pose Z type checker and theorem prover that allows a
user to interactively browse, type check and perform



DoorDeployedOperation
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

((RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = False)

Figure 6. Z operation schema for DoorDeployed

proofs upon a Z specification. CADiZ allows gen-
eral purpose proof tactics to be written in a lazy func-
tional notation [27], these can be invoked from within
a CADiZ window and applied to any proof obligation
on the screen. This level of proof tactic re-use is possi-
ble because of the consistent structure of the complete-
ness and determinism conjectures. A proof tactic has
been written to prove the determinism and completeness
conjectures. The tactic first simplifies the constraint and
then calls either the SMV [3] model checker (most suit-
able for predicates involving finite types) or a simulated
annealing based constraint solver [4] (used for counter-
example generation for predicates involving mixed nu-
meric types including integers and reals). If the check
fails, a counter-example is given. This information has
been found to be extremely valuable when tracking the
error in the specification. Conjectures that can not be au-
tomatically discharged in this way involve a mixture of
enumerated and infinite numeric types. This combina-
tion is not currently supported by the constraint solvers.
Restricting the numeric types to sensible finite ranges
allows these constraints to be checked automatically.

The healthiness checks that failed have been found to
be due to areas of omission or ambiguity in the original
system requirements that were not detected through re-
view or animation. This illustrates that there is much
benefit to be obtained by verifying relatively simple
properties of the specifications and the high level of au-
tomation ensures that the only additional work required
is that of locating the errors in the specification based
on the counter-examples. This work would otherwise be
done at a later stage with perhaps less illuminating data
to work from.

The high level of automation allows the analysis to be
re-run each time the specification is changed, further re-
ducing the cost of rework. Although the interactive ver-
sion of CADiZ allows the proof effort to be automated

it still requires some repetitive work from the user to
load the generated Z file and select each proof obliga-
tion in turn to apply the proof tactics. Work is under-
way to encapsulate the functionality of CADiZ within
an API. This will provide the opportunity to fully in-
tegrate the formal analysis into specification modelling
tools. Instant feedback on the properties being analysed
can then be presented to the user using the same format
as the original specification. The details of the analysis
would be recorded (as the intermediate specification and
proofs in Z) for review by engineers with the relevant
formal methods skills.

5. Automatic test case generation

The formal specification describes each atomic action
defined by the requirements specification. These opera-
tions can be used as basic test specifications. If data can
be found to satisfy these constraints, the results of apply-
ing the data to the implementation can be used to gain
confidence in its correctness with respect to the specifi-
cation. The success of testing depends on the ability to
select data that demonstrates the presence of a fault in
the program. Category-partitioning [21] is a method of
deriving tests based on a formal specification and testing
heuristics based on common error types. Test data gen-
erated for the partitioned specification is then assumed
to have a greater chance of detecting errors in the imple-
mentation (at least errors of the type used to formulate
the testing heuristic). This approach was first applied
to formal specifications by Ostrand and Balcer [21] and
has been developed and applied to the formal specifica-
tion notation Z by Stocks and Carrington [25].

The category-partition method is based on the theory
of equivalence classes [8]. The input domain of the test
specification is partitioned into sets of data that exhibit
the same behaviour in the specification. If the equiva-



DoorDeployedOperationPartition1
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

( RamPosition? = DeployedPosition ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

DoorDeployedOperationPartition2
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

( RamPosition? = DeployedPosition + 1 ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

DoorDeployedOperationPartition3
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

( RamPosition? > DeployedPosition + 1 ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

Figure 7. Test partitions for DoorDeployed

lence class hypothesis is assumed to hold in the imple-
mentation, only a selection of data from each equiva-
lence class is needed to show that the implementation
satisfies the specification for all data in that class.

As an example, the operation defining the DoorDe-

ployed function (from figure 2, but corrected based on
the completeness analysis described above) will now be
partitioned to verify that the boundary used to define
when the hydraulic ram is in the deployed position is
correctly implemented in the code. The Z specification



8X; Y : N � X � Y ,

X = Y _

X = Y + 1 _

X > Y + 1

Figure 8. Generic test heuristic for �

of the operation is given in figure 6. The ? and ! dec-
orations are used to distinguish between the input and
output parameters to the schema. Based on the assump-
tion that errors often occur on or around boundaries, ap-
plying a boundary value analysis partitioning strategy
would result in the partitions shown in figure 7. The ad-
ditional constraints added by the partitioning are shown
in bold. These partitions together with those generated
for the condition where the hydraulic ram is not in the
deployed position, from the second guard in figure 2,
fully test the boundary.

The category-partition method has been automated as
extensions to the CADiZ theorem prover. Partitioning
heuristics are specified as lemmas and general-purpose
proof tactics are used to apply the heuristics via the
graphical user interface. The predicate to be partitioned
is highlighted and a proof tactic invoked via a menu
option which automatically introduces the partitioning
heuristic into the operation conjecture, instantiates the
generic heuristic with the operands of the predicate and
simplifies the whole conjecture to reveal a disjunction
of partitions. Each partition is then converted into a sep-
arate schema operation. The lemma used to create the
partitions shown in figure 7 is given in figure 8. The
user is also given the opportunity to amend the support-
ing English language description of the operation being
partitioned, to include for example the rationale behind
using the particular partitioning strategy.

The method of specifying the heuristics as lemmas,
stored in a separate Z library file, which are then ‘cut’
into the operation has several important advantages.
Properties of the heuristics themselves can be proven
(e.g. that the partitions together maintain the state-space
of the operation). If more heuristics are required (e.g.
based on common errors specific to the system under de-
velopment), they can be added without making a change
to the software itself. The test specifications can be in-
stantiated with test data via a similar mechanism to the
test partitioning. The test specification is highlighted
and an option called from within a CADiZ menu. A
proof tactic is then automatically applied that simplifies
the constraint and applies either the SMV model checker
or simulated annealing constraint solver to generate a set
of data satisfying the test specification.

Once the test data has been generated, CADiZ pro-

duces a corresponding AdaTEST [16] test script. AdaT-
EST provides a harness for automating the execution,
checking and documentation of tests for software writ-
ten in the Ada language. AdaTEST can also record the
structural code coverage achieved by running the tests.
Manually producing these test scripts, consumes a large
proportion of the test engineers time. By automating
this step, effort that was previously required for test im-
plementation can now be redirected towards more rigor-
ous test design. The generated test scripts also include
the informal text derived from the original requirements
and annotated with the test rationale during partition-
ing. This text is automatically included in the AdaTEST
test results file and provides the traceability between any
suspected fault in the program, the requirement under
test and the heuristic used in designing the test.

The test specifications for the case study were first
partitioned to give Modified Condition/Decision Cover-
age7 (MC/DC) of each operation. Additional tests were
then generated based on other heuristics, such as bound-
ary value analysis. If full MC/DC (as mandated by
certification standards such as D0-178B [23]) was not
achieved by running these tests, it was assumed that the
untested code represented refinements in the design or
potential errors. Additional manual test effort then con-
centrated on writing tests for and reviewing these po-
tentially problematic areas of code. The targeting of
testing resources in this way was made possible by the
high amount of automation achieved in generating the
requirements covering tests.

6. Results and Evaluation

A summary of the specification validation and test-
ing work performed for the thrust reverser case study
is shown in figure 9. The numbers include only auto-
matically generated proof obligations and tests and the
requirements errors found by discharging the proofs. An
activity is said to be automated if it requires at most
a single interaction from the user to perform (e.g. a
proof is discharged by selecting a completeness conjec-
ture and choosing “Completeness Check” from the on-
screen menu). Consequently these activities take very
little time to perform. Many of the proof obligations
stretched over 4 pages of formal text. Each of these
would have taken an engineer a significant amount of
time to prove or disprove. On a Pentium II 400 MHz
computer running the linux operating system, the largest
of these proofs took no more than a second to discharge.

The activities in the process described in this paper
that have so far been automated are: automatic genera-
tion of a formal specification and associated healthiness

7MC/DC is achieved by showing that each condition within a de-
cision can independently affect that decision’s outcome[23].



State-based components:
State-machines 9
States 48
Transitions 112
Z operations 112
Specification validation proofs 74
Automatically discharged proofs 74
Requirements errors found 18
Automatically generated tests 262
Reactive components:
Tables 34
Definition/Guard pairings 84
Z operations 34
Specification validation proofs 62
Automatically discharged proofs 52
Requirements errors found 18
Automatically generated tests 237

Figure 9. Summary of results

property proof obligations from a Statechart modelled
using STATEMATE, automatic proof or generation of a
counter-example for PFS (Statechart and tabular) com-
pleteness and determinism healthiness properties, auto-
matic partitioning of formally specified operations (de-
rived from Statecharts of tabular requirements) into test
cases based on pre-defined heuristics and the automatic
generation of test data for the partitions and associated
AdaTEST test script. Activities that we believe can be
automated or are already in the process of being auto-
mated are; automatic generation of a formal specifica-
tion and associated healthiness proof obligations from
PFS tabular requirements (given a consistent form of
recording and managing these requirements), automatic
identification of the healthiness property proof obliga-
tions within the Z specification and application of the
appropriate proof tactics and the automatic selection of
partitioning strategies to generate test sets to satisfy par-
ticular structural specification coverage criteria.

The results show that a significant number of require-
ments errors were detected for little additional effort.
All the requirements errors detected using this method
manifested themselves as either non-determinism or in-
completeness of the specification (as would be expected
based on the nature of the checks). On analysis of
these errors we discovered two distinct causes. The first
type of error was the result of a mis-interpretation of
some higher level requirements that resulted in an in-
correct specification with respect to these requirements.
These errors accounted for the greater proportion of to-
tal requirements errors found. The second type of error
was non-determinism or incompleteness as the result of
some omission or ambiguity in the higher level require-

ments. Although these errors were less frequent (poten-
tially because the analysis was not specifically targeted
at validating the higher level requirements) they were
deemed to be very valuable.

A far greater number of tests were generated than
would have been written for a specification of this size
using the traditional process. The number of tests that
can be written are typically restricted by the time it
takes to design, implement and evaluate each test, in
the process described here much of this effort has been
automated, greatly reducing the amount of effort per
test case. When the analysis or test revealed an er-
ror, the time taken to review and rework the error var-
ied according to the nature of the problem. However,
the impression amongst those involved was that the
counter-example information and supporting informal
text greatly contributed to the process of tracking down
the errors in the requirements. It was also noted that as
the case study progressed the number of requirements
errors being detected decreased significantly. The feed-
back from the formal analysis was thought to have influ-
enced the style of requirements specification, i.e. the au-
thor of the requirements was consciously writing speci-
fications to meet the healthiness conditions specified by
the PFS methodology.8

In [18], Knight presented the following criteria for
industrial acceptance of formal methods. Based on the
evidence from the case study and experience of work-
ing with our industrial partners we can now assess the
industrial suitability of our work along similar lines.

1. Formal methods must not detract from the accom-
plishments achieved by current methods

2. Formal methods must augment current methods so
as to permit industry to build “better” software

3. Formal methods must be consistent with those cur-
rent methods with which they must be integrated

4. They must be compatible with the tools and tech-
niques that are currently in use

These criteria emphasise the need to develop formal
methods for the types of practical tools and notations
used in industry and also for formal methods to com-
plement and not preclude existing practices. It is the
authors’ opinion that the work described in this paper
has gone some way to satisfying these criteria, although
admittedly for a particular domain and set of V&V ac-
tivities. This was accomplished by basing the formal

8The final validation of the system will tell whether the require-
ments indeed improved or whether errors were instead being intro-
duced into areas not covered by the healthiness conditions.



analysis and test case generation activities on an auto-
matically generated formal representation of the intu-
itive requirements specifications, written using existing
modelling tools. In addition, the activities performed
here complement methods already in use such as review
and animation. As such they can be seen as natural ex-
tensions to the existing modelling process.

Formal specifications are typically very sensitive to
change. However, due to automation, the formal spec-
ifications can be re-generated and verified whenever
a change in the requirements occurred, at little extra
cost. The intuitive engineering requirements remained
the first class citizens of the process and the standard
interface to the engineers. The ongoing extensions to
CADiZ to provide a ‘silent’ interface via an API will
allow modelling environments such as Statemate to ex-
ploit an intermediate formal representation of the re-
quirements to perform checks and generate tests while
hiding the details of the analysis from the engineer. This
would further encourage an iterative development of the
requirements (i.e. do not pass onto the coding phase un-
til the requirements have been properly validated) and
increase the efficiency of the test generation process.

7. Conclusions and Future Work

In this paper we described our experiences in inte-
grating formal methods into an industrial software de-
velopment process. Intuitive engineering notations were
translated into intermediate formal specifications which
formed the basis of automated proof and test case gener-
ation activities. The high level of automation was made
possible by restricting the work to a particular domain
(discrete engine control requirements) and a tight sub-
set of an otherwise highly expressive formal notation
(Z). The automated analysis and tests allowed a signifi-
cant amount of errors to be detected earlier than would
have been possible had a manual, ad-hoc approach been
taken.

The findings support other work [5, 13, 1] that has
similarly used formal semantics of engineering nota-
tions to facilitate an effective approach to verification.
The work presented here contributes to this field by
showing that general purpose formal analysis tools such
as CADiZ and SMV can be used to support automated
analysis and test generation based on different engineer-
ing notations given a suitable translation from the nota-
tions to a formal specification.

In developing these techniques we have identified the
following generic process for applying formal methods
to engineering notations for automated V&V.

1. Use intuitive Engineering notations with fixed
semantics: Record and maintain the requirements

specifications in notations most suitable for the do-
main and whose semantics can be formally speci-
fied.

2. Couch healthiness conditions as mathematical
constraints: Identify “healthiness properties” that
should be common to all specifications e.g. com-
pleteness and determinism. Based on the formal
semantics of the notations, couch these properties
as mathematical constraints. Automate the transla-
tion if possible.

3. Formally specify the behaviour under test: De-
fine a translation between the original notation and
a formal specification of the properties under test
based on the formal semantics. Automate the trans-
lation if possible.

4. Exploit existing tool-support: Apply a combina-
tion of automated proof, model checking and con-
straint solving to analyse the healthiness properties,
to generate test specifications and to generate test
data.

5. Complement the formal specification and tests
with informal text: To aid the review and docu-
mentation of the analysis and test results, informal
text descriptions should be generated and main-
tained to describe the formal specification of the
healthiness properties and tests.

Ongoing work aims to increase the level of automa-
tion and integration of the formal techniques into exist-
ing specification modelling environments with the de-
velopment of a CADiZAPI. In addition to this, we also
hope to expand the generic process and the toolset to
cover more areas of the verification process. In par-
ticular, the refinement of the intermediate formal spec-
ification into program annotations that can be used to
discharge correctness proofs on the code and the auto-
matic efficient sequencing of test cases to reduce the
amount of effort required to physically run the generated
tests. Other work will concentrate on developing further
the constraint solving abilities of the CADiZ theorem
prover. This will allow a wider range of specifications
and properties to be automatically verified than the cur-
rent system.
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